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The Economics of 
Computing Workload 
Aggregation: Capacity, 
Utilization, and Cost 
Implications

ccording to the NIST definition, one key characteristic of cloud comput-
ing is “resource pooling to serve multiple consumers using a multiten-
ant model, with different physical and virtual resources dynamically 
assigned and reassigned according to consumer demand.”1 In other 

words, instead of running in silos, workloads with time-varying demands or 
processing intensities are often aggregated, assigned, and provisioned into 
a shared pool of resources. One obvious example is cloud computing, where  
workloads—say, claims processing, shopping carts, and video transcoding—
from multiple customers—say, insurers, ecommerce companies, and online 
streaming entertainment firms—are aggregated together, mapped to a shared 
pool of physical resources such as servers, and then execute on those resources. 
This is similar to the way that lodging needs of travelers are aggregated together; 

guests are assigned actual hotel rooms; 
and then are checked in and move their 
luggage up to their room for the dura-
tion of their stay.

There are many benefits of this type of aggrega-
tion. First, less capacity is typically needed for the 
pool than were individuals to build their own capac-
ity. Second, the utilization of this capacity is greater, 
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because the same amount of work 
is being handled by fewer resources. 
Thirdly, therefore, the utilization-
adjusted cost of a unit of sold capacity 
can be lower. In this issue’s column, 
we’ll quantify those benefits exactly.

Aggregation of workloads occurs in 
many instances in computing. One case 
is when siloed workloads, each running 
in their own dedicated capacity, are vir-
tualized and aggregated into a private 
cloud of dynamically allocated, shared 
resources. Another case is when such 
private clouds from multiple customers 
are aggregated into a public cloud. Yet 
another case is when multiple public 
clouds are federated to share capacity.

Moving beyond these traditional 
and emerging cloud approaches, fog or 
edge computing is an emerging para-
digm for computing also subject to 
these same laws, for better or worse.2 
The fog approach inserts one or more 
layers between highly centralized hyper-
scale cloud datacenters and endpoint 
devices such as user smartphones or 
laptops or “things”, such as nannycams, 
connected light bulbs, or connected 
vehicles. Although it is typical to think 
of the fog as moving some cloud func-
tionality closer to users and things, it is 
equally fair to view the fog as moving 
some “thing” functionality closer to the 
cloud, for example, aggregating control 
functionality or data management— 
say, in programmable logic controllers 
or robots or smart door locks or surveil-
lance cameras—to a higher layer. This 
can have a number of benefits, such 
as reduced latency for time-sensitive 
functions—say, controlling a flexible 
manufacturing cell with multiple mill-
ing machines, materials handling sys-
tems, and/or interacting robots—and  
reducing backhaul data transport 
requirements—say, by compressing data 
or only transmitting exceptions to a cen-
tralized location. To put it another way, 

because fog resources are dispersed at 
the edge, round trip latency from a user 
or thing to the fog and back to that user 
or thing will be lower than a round trip 
from user or thing all the way to the 
cloud and back to the user or thing. 
On the other hand, applications in the 
cloud will have better response times 
when accessing data or services in the 
same cloud datacenter.

From an aggregation perspective, 
however, the same principles apply: 
reduced capacity requirements, higher 
utilization, and therefore lower costs. 
While latency and transport costs are 
beneficially impacted through a fog 
approach, cloud trumps fog for capac-
ity, utilization, and cost. With that same 
focus, fog trumps devices: aggregat-
ing computing needs from lower-layer 
devices into an intermediate fog layer is 
also beneficial for capacity, utilization, 
and cost. As a general rule, centralizing 
formerly dispersed resources and func-
tionality hurts latency and data trans-
port costs to and from endpoints, but 
helps with total resource costs. There 
are also other factors to consider, for 
example, business continuity impli-
cations, remote management needs, 
physical security, cybersecurity and 
vulnerability, and storage replication 
impacts, which are beyond the scope of 
this column.

Capacity Requirements
One essential characteristic of the 
cloud is that available capacity is pooled 
and dynamically shared to support mul-
tiple time-varying workload demands. 
For example, tax preparers have peaks 
in early February and mid-April, flower 
sellers have peaks on Valentine’s Day 
and Mothers’ Day, retailers have peaks 
on cyber Monday or Single’s Day, etc. 
The total capacity that is deployed 
impacts the total investment require-
ments of whoever is deploying that 

capacity, e.g., an enterprise for a private 
cloud or a cloud service provider for a 
public cloud. The capacity conundrum 
is that if there is insufficient capacity, 
enterprise workloads will either not be 
run or will run slowly, incurring a cost 
in labor productivity for internal appli-
cations and/or revenue and customer 
experience for external ones; if there is 
excess capacity it will require an exces-
sive investment, also incurring a cost 
through cost of capital and/or opportu-
nity cost of idle capital that could be 
more productively deployed elsewhere.3 
For cloud service providers, excess 
capacity means wasted investment, 
and insufficient capacity implies lost 
revenue.

Workload demand aggregation can 
reduce capacity requirements com-
pared to unaggregated demands. Such 
aggregation can happen by aggregat-
ing workloads that would otherwise be 
siloed into a pool of resources dynami-
cally shared via a private cloud; further 
aggregation happens when siloed pri-
vate cloud workloads run by individual 
enterprises are brought together in an 
environment such as a community or 
public cloud shared across multiple 
enterprises; and maximum aggregation 
occurs when multiple public clouds 
are virtually aggregated by a federated 
cloud or Intercloud.4 This sort of “east-
west” aggregation can also be comple-
mented by a “north-south” aggregation, 
when dispersed fog resources are aggre-
gated into the cloud, or dispersed device 
functionality is aggregated into the fog.

To quantify these kinds of effects, 
let us model the demands of n indepen-
dent compute workloads as D1, D2, …
Dn. To keep things simple, we’ll assume 
that they are all identically distributed 
with mean m and variance s2. Let’s fur-
ther assume that they are normally dis-
tributed, although most of the results 
here apply regardless of distribution. If 
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we aggregate these n demands together, 
the sum will be normally distributed, 
its mean will be nm and its variance 
will be ns2, which means that the stan-
dard deviation of the sum will be nσ.  
Whether for one such workload or the 
totality, we’d like to balance availabil-
ity of compute resources with cost of 
compute resources, so generally will try 
to find a value of k standard deviations 
above the mean to set the capacity. For 
example, for a normally distributed vari-
able with mean m and variance s2, the 
probability that it has a value between 
m 2 s and m 1 s is 0.682689. Therefore, 

if we set capacity to one standard devia-
tion above the mean, we know that 
roughly 68% of demand levels will fall 
within that one standard deviation, with 
16% falling on either side (i.e., in each 
tail). This means that if we set capacity 
to m 1 s, we will have sufficient capac-
ity all but 16% of the time, as shown in 
Figure 1.

As shown in Figure 2, if we set 
capacity to m 1 2s, because 95.4% of the 
normal distribution falls within m 2 2s 
and m 1 2s, only 4.6% falls outside of 
the range, therefore there will be suffi-
cient capacity 97.7% of the time. Such 

theoretical availability numbers, i.e., 
likelihood of sufficient capacity, don’t 
model other potential real-world issues, 
of course, such as physical “smoking 
hole” disasters, Distributed Denial of 
Service attacks, power outages, cloud 
data center operations issues, bankrupt-
cies, and the like.

When we aggregate capacity, there 
is a smoothing effect, where a peak in 
one workload’s demand is likely to be 
balanced by a trough in another. The 
more independent workload demands 
that we combine, the smoother the 
aggregate is. The statistic that cap-
tures this behavior is the coefficient of 
variation: s/m, in other words, the size 
of the variation relative to the size of 
the mean. After all, skyscrapers with 
heights varying from each other by  
10 feet represents hardly any variation, 
whereas if people, kittens, or bacteria 
each varied by that amount, it would be 
very noticeable.

When we aggregate n independent 
demands with standard deviation s and 
mean m, the denominator of the coef-
ficient of variation of the sum grows to 
nm, but the numerator only grows to 

nσ, so it will be appreciated that the 
coefficient of variation gets smaller and 
smaller, i.e., the aggregate demand gets 
smoother/flatter, and becomes zero in 
the limit as n approaches infinity. At 
that (theoretical) point, there would be 
no variation; there would be perfectly 
flat aggregate demand, and capacity 
would have 100% utilization.

Suppose that we would like to ensure 
that capacity is sufficient some given 
percentage of the time. For example, 
if we wanted sufficient capacity 97.7% 
of the time for a demand with mean m 
and standard deviation s, we would set 
it to m 1 2s, in line with the earlier dis-
cussion regarding setting capacity by 
relating it to the standard deviation of 
demand. If we don’t aggregate demands 
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FIGURE 1. Capacity set to m 1 1s.

FIGURE 2. Capacity set to m 1 2s.
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and pool resources, we would 
then set capacity to a specific m 1  
ks for each of the same siloed (i.e., 
unpooled) resources, for a total capac-
ity of n(m 1 ks) 5 nm 1 kns. However, 
if we do aggregate demands and serve 
them out of pooled resources, for that 
same sufficiency, we only need to set 
capacity to n k nµ σ+ .

To illustrate, consider the demand 
level at various times from a workload 
with a mean demand of 10 units and a 
standard deviation of 2 units, as shown 
in Figure 3. This could be the number of 
thousand virtual machines needed each 
day, or, in other domains, the number 
of cars sold each day, or the number of 
emergency room visits each hour.

If we were to examine 16 such  
workloads in aggregate, as shown in 
Figure 4, we end up with an aggregate 
demand that has a mean of 160 and 
standard deviation of 8 ( 16 2)× . Thus, 
the coefficient of variation is reduced 
from 0.2 5 2/10 to 0.05 5 8/160. This 
is easy to see by comparing Figure 3 
with Figure 4; Figure 4 has a scatter 
plot which is “tighter”.

As another example, we can calcu-
late what would happen if we were to set 
capacity to be three standard deviations 
above the mean. In the case of parti-
tioned demands and unpooled resources, 
the total capacity we would need is n(m 
1 ks), or 256 5 16(10 1 3 3 2), whereas 
if demands and resources were aggre-
gated, we would only need n k nµ σ+  or 
184 5 16 3 10 1 3 3 4 3 2.

Of course, the actual difference 
will vary based on the mean m, the 
standard deviation s, the desired capac-
ity headroom factor k, and the number 
of aggregated workloads n.

Capacity Utilization
Another important metric is the 
expected value of utilization of total 
deployed capacity, which is just the 

mean demand divided by the total 
capacity. For a single resource, that is 
m/(m 1 ks), and therefore for n unag-
gregated demands served out of n such 
resources it’s the mean total workload 
demand divided by the total deployed 
capacity, or nm/[n(m 1 ks)]. In the case 
of aggregated workload demands, it’s 
the same total work executing on lesser 
capacity, so the utilization increases to 

µ µ σ+ /( )n n k n . Figure 5 shows how 
workload aggregation monotonically 
increases to utilization of 100% in the 
limit, as a function of these four vari-
ables. In other words, utilization U 5 
f(n, m, s, k).

To put it simply, dynamic aggrega-
tion of varying, independent workload 
demands into pooled capacity always 
generates benefits in terms of capacity 
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FIGURE 3. 100 samples from a normally distributed random variable X with m 5 10, s 5 2.

FIGURE 4. 100 samples from a random variable that is the sum of 16 independent, 

identically distributed normal random variables with m 5 10, s 5 2.
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requirements and capacity utilization—
briefly stated as less capacity, that is 
better utilized—whether it is from 
dedicated application silos to a private 
cloud, from private clouds to a public 
cloud, from multiple public clouds to 
an intercloud or federated cloud, from 
dispersed fog to cloud, or from individ-
ual devices to the fog. Of course, these 
benefits can come at a price, such as 
data transfer costs and latencies, secu-
rity vulnerabilities, or extra software to 
implement dynamic resource allocation.

Unit Resource Cost Improvements
These capacity and utilization effects 
come together to impact the overall eco-
nomics of demand aggregation, impact-
ing chief information officers, chief 
financial officers, and IT personnel as 
they think about implementing private 
clouds or migrating to a public cloud. 
Consider a simple analogy. If you ran a 
fruit stand and needed to throw away a 
rotting peach for every fresh peach that 
you sold, your economics would be dis-
advantaged compared to a competitor of 
the same size with less shrinkage.

In a similar way, if you have more 
resources that are less well utilized, you 
will have a unit cost disadvantage com-
pared to someone with fewer resources 

and higher utilization levels. In other 
words, for the same amount of work, 
more resources and lower utilization are 
two sides of the same coin. Even with-
out scale economies, the statistics of 
aggregation provide a basis for a lower 
delivered cost.

For the fruit stand, the unit price of 
a sellable/consumable peach reflects the 
unit acquisition cost of a peach * (the 
total number of sellable/consumable 
plus unsellable/unconsumable peaches  
acquired)/the number of sellable/ 
consumable peaches. In other words, 
the sales price has to increase based 
on the ratio of total peaches to good 
peaches. As the number of bad peaches 
increases, the selling price has to 
increase to reflect that loss, assuming 
profit margins and peach acquisition 
costs remain the same. Conversely, the 
sales price can decrease as there are 
fewer bad peaches; ideally, none.

Instead of peaches, let’s consider 
compute resources. Then, the unit 
price of a sellable/consumable compute 
resource reflects the deployment costs 
of a resource * (the total number of 
sellable/consumable plus unsellable/
unconsumable resources deployed)/
the number of sellable/consumable 
resources. In other words, instead of 

the sales price increasing based on the 
ratio of total peaches to good peaches, 
the sales price has to increase based 
on the ratio of total capacity to “good,” 
i.e., consumed, capacity. Peaches are 
perishable, as is computing capacity, 
which can’t be inventoried and thus rots 
instantly when it isn’t used.

The price increase penalty is easy 
to determine from the formulas above. 
The expected value of the price increase 
for unaggregated resources is just:

   
   

 
( )total unaggregated capacity

used unaggregated capacity
n k

n
µ σ
µ

=
+

The price increase for aggregated 
resources is:

   
   

 
total aggregated capacity
used aggregated capacity

n k n
n

µ σ
µ

=
+

By dividing by n throughout, this 
works out to:

 

k
n

µ
σ

µ
=

+

Since k, m, and s are constants, it is 
pretty clear that, in the limit as n → ∞, 
there is effectively no penalty.

To put it another way, the denomina-
tors don’t change, since the application 
workloads remain the same. There is the 
same amount of work either way; and 
the same amount of good peaches either 
way. The same number of people (n) still 
buy the same average number of peaches 
each (m) or do the same average amount 
of computing. Therefore, the ratio of the 
penalty for siloing vs. aggregation is

( )n k
n

n k n
n

µ σ
µ

µ σ
µ

+

+

This of course is just:

( )n k
n k n
µ σ
µ σ
+
+

FIGURE 5. Utilization U 5 f(n, m, s, k) where m 5 10 and s 5 2 for various k from n 5 1 

to 100.
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Figure 6 shows the cost penalty for 
any given number of workloads n and given 
capacity level of m 1 ks, for the case where 
m is 10 and s is 2. To use our favorite exam-
ple, where n is 16 and k is 3, this works out 
to 256/184 5 1.39, a 40% cost penalty. If 
we increase n to 100, the difference is 
1600/1060 5 1.51, a 50% cost penalty.

Caveats
The real world may not always match the 
conditions explored above. For example, 
workload variation may not be normally 
distributed, workloads may not have 
the same mean or standard deviation, 
dynamic pricing (as with spot instances) 
may be used to smooth capacity by pro-
moting demand, there are network costs 
to demand aggregation, and so forth.

However, the underlying insights 
are unassailable: demand is smoothed 
by aggregation of independent, uncor-
related workloads and therefore capacity 
requirements to meet a given availability 
target, in the sense of sufficient capacity, 
can be lower, utilization of that reduced 
capacity can be higher, and unit costs 
and prices of sold resources can there-
fore be lower after aggregation. These 
benefits occur immediately—with the 
second workload to be aggregated—and 
from there exhibit decreasing marginal 
returns to scale, before considering any 
scale economy effects.

Summary
Aggregation creates unarguable eco-
nomic benefits in terms of capital 
investment required for service resource 
capacity; utilization of that capacity; and 
the delivered unit cost. These benefits 
offer a series of advantages for private 
cloud over siloed resources; public cloud 
over a private cloud; cloud over fog; fog 
over devices/things, and so forth. These 
advantages need to be traded off against 
other factors, for example, response 
time, data networking costs, etc. 
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