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CLOUD ECONOMICS DEPARTMENT

The Economics of
Computing Workload
Aggregation: Capacity,
Jtilization, and Cost
mplications

ccording to the NIST definition, one key characteristic of cloud comput-

ing is “resource pooling to serve multiple consumers using a multiten-

ant model, with different physical and virtual resources dynamically

assigned and reassigned according to consumer demand.” In other
words, instead of running in silos, workloads with time-varying demands or
processing intensities are often aggregated, assigned, and provisioned into
a shared pool of resources. One obvious example is cloud computing, where
workloads—say, claims processing, shopping carts, and video transcoding—
from multiple customers—say, insurers, ecommerce companies, and online
streaming entertainment firms—are aggregated together, mapped to a shared
pool of physical resources such as servers, and then execute on those resources.
This is similar to the way that lodging needs of travelers are aggregated together;
guests are assigned actual hotel rooms;
and then are checked in and move their
luggage up to their room for the dura-
tion of their stay.

ED”T@R There are many benefits of this type of aggrega-
JOE WEINMAN tion. First, less capacity is typically needed for the
joeweinman@gmail.com pool than were individuals to build their own capac-

ity. Second, the utilization of this capacity is greater,
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because the same amount of work

is being handled by fewer resources.
Thirdly, the

adjusted cost of a unit of sold capacity

therefore, utilization-
can be lower. In this issue’s column,
we'll quantify those benefits exactly.
Aggregation of workloads occurs in
many instances in computing. One case
is when siloed workloads, each running
in their own dedicated capacity, are vir-
tualized and aggregated into a private
cloud of dynamically allocated, shared
resources. Another case is when such
private clouds from multiple customers
are aggregated into a public cloud. Yet
another case is when multiple public
clouds are federated to share capacity.
Moving beyond these traditional
and emerging cloud approaches, fog or
edge computing is an emerging para-
digm for computing also subject to
these same laws, for better or worse.?
The fog approach inserts one or more
layers between highly centralized hyper-
scale cloud datacenters and endpoint
devices such as user smartphones or
laptops or “things”, such as nannycams,
connected light bulbs, or connected
vehicles. Although it is typical to think
of the fog as moving some cloud func-
tionality closer to users and things, it is
equally fair to view the fog as moving
some “thing” functionality closer to the
cloud, for example, aggregating control
functionality or data management—
say, in programmable logic controllers
or robots or smart door locks or surveil-
lance cameras—to a higher layer. This
can have a number of benefits, such
as reduced latency for time-sensitive
functions—say, controlling a flexible
manufacturing cell with multiple mill-
ing machines, materials handling sys-
tems, and/or interacting robots—and
data

requirements—say, by compressing data

reducing backhaul transport

or only transmitting exceptions to a cen-
tralized location. To put it another way,
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because fog resources are dispersed at
the edge, round trip latency from a user
or thing to the fog and back to that user
or thing will be lower than a round trip
from user or thing all the way to the
cloud and back to the user or thing.
On the other hand, applications in the
cloud will have better response times
when accessing data or services in the
same cloud datacenter.

From an aggregation perspective,
however, the same principles apply:
reduced capacity requirements, higher
utilization, and therefore lower costs.
While latency and transport costs are
beneficially impacted through a fog
approach, cloud trumps fog for capac-
ity, utilization, and cost. With that same
focus, fog trumps devices: aggregat-
ing computing needs from lower-layer
devices into an intermediate fog layer is
also beneficial for capacity, utilization,
and cost. As a general rule, centralizing
formerly dispersed resources and func-
tionality hurts latency and data trans-
port costs to and from endpoints, but
helps with total resource costs. There
are also other factors to consider, for

example, business continuity impli-
cations, remote management needs,
physical security, cybersecurity and

vulnerability, and storage replication
impacts, which are beyond the scope of
this column.

Capacity Requirements

One essential characteristic of the
cloud is that available capacity is pooled
and dynamically shared to support mul-
tiple time-varying workload demands.
For example, tax preparers have peaks
in early February and mid-April, flower
sellers have peaks on Valentine’s Day
and Mothers’ Day, retailers have peaks
on cyber Monday or Single’s Day, etc.
The total capacity that is deployed
impacts the total investment require-
ments of whoever is deploying that

capacity, e.g., an enterprise for a private
cloud or a cloud service provider for a
public cloud. The capacity conundrum
is that if there is insufficient capacity,
enterprise workloads will either not be
run or will run slowly, incurring a cost
in labor productivity for internal appli-
cations and/or revenue and customer
experience for external ones; if there is
excess capacity it will require an exces-
sive investment, also incurring a cost
through cost of capital and/or opportu-
nity cost of idle capital that could be
more productively deployed elsewhere.?
For cloud service providers, excess
capacity means wasted investment,
and insufficient capacity implies lost
revenue.

Workload demand aggregation can
reduce capacity requirements com-
pared to unaggregated demands. Such
aggregation can happen by aggregat-
ing workloads that would otherwise be
siloed into a pool of resources dynami-
cally shared via a private cloud; further
aggregation happens when siloed pri-
vate cloud workloads run by individual
enterprises are brought together in an
environment such as a community or
public cloud shared across multiple
enterprises; and maximum aggregation
occurs when multiple public clouds
are virtually aggregated by a federated
cloud or Intercloud.* This sort of “east-
west” aggregation can also be comple-
mented by a “north-south” aggregation,
when dispersed fog resources are aggre-
gated into the cloud, or dispersed device
functionality is aggregated into the fog.

To quantify these kinds of effects,
let us model the demands of # indepen-
dent compute workloads as Dy, D,, ...
D,,. To keep things simple, we'll assume
that they are all identically distributed
with mean u and variance o?. Let’s fur-
ther assume that they are normally dis-
tributed, although most of the results
here apply regardless of distribution. If
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we aggregate these n demands together,
the sum will be normally distributed,
its mean will be nu and its variance
will be n0?, which means that the stan-
dard deviation of the sum will be Vno.
Whether for one such workload or the
totality, we'd like to balance availabil-
ity of compute resources with cost of
compute resources, so generally will try
to find a value of k standard deviations
above the mean to set the capacity. For
example, for a normally distributed vari-
able with mean w and variance o?, the
probability that it has a value between
u—oand u + ois 0.682689. Therefore,

2.3%

if we set capacity to one standard devia-
tion above the mean, we know that
roughly 68% of demand levels will fall
within that one standard deviation, with
16% falling on either side (i.e., in each
tail). This means that if we set capacity
to u + o, we will have sufficient capac-
ity all but 16% of the time, as shown in
Figure 1.

As shown in Figure 2, if we set
capacity to u + 20, because 95.4% of the
normal distribution falls within u — 20
and u + 20, only 4.6% falls outside of
the range, therefore there will be suffi-
cient capacity 97.7% of the time. Such

theoretical availability numbers, i.e.,
likelihood of sufficient capacity, don't
model other potential real-world issues,
of course, such as physical “smoking
hole” disasters, Distributed Denial of
Service attacks, power outages, cloud
data center operations issues, bankrupt-
cies, and the like.

When we aggregate capacity, there
is a smoothing effect, where a peak in
one workload’s demand is likely to be
balanced by a trough in another. The
workload demands
the smoother the
statistic that cap-

more independent
that we combine,
aggregate is. The
tures this behavior is the coefficient of
variation: o/u, in other words, the size
of the variation relative to the size of
the mean. After all, skyscrapers with
heights varying from each other by
10 feet represents hardly any variation,
whereas if people, kittens, or bacteria
each varied by that amount, it would be
very noticeable.

When we aggregate n independent
demands with standard deviation o and
mean W, the denominator of the coef-
ficient of variation of the sum grows to
nu, but the numerator only grows to
Jno, so it will be appreciated that the
coefficient of variation gets smaller and
smaller, i.e., the aggregate demand gets
smoother/flatter, and becomes zero in
the limit as n approaches infinity. At
that (theoretical) point, there would be
no variation; there would be perfectly
flat aggregate demand, and capacity
would have 100% utilization.

Suppose that we would like to ensure
that capacity is sufficient some given
percentage of the time. For example,
if we wanted sufficient capacity 97.7%
of the time for a demand with mean pu
and standard deviation o, we would set
it to w + 20, in line with the earlier dis-
cussion regarding setting capacity by
relating it to the standard deviation of

demand. If we don’t aggregate demands
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and pool resources, we would
then set capacity to a specific u +
ko for each of the same siloed (i.e.,
unpooled) resources, for a total capac-
ity of n(u + ko) = nu + kno. However,
if we do aggregate demands and serve
them out of pooled resources, for that
same sufficiency, we only need to set
capacity to nu + ky/no.

To illustrate, consider the demand
level at various times from a workload
with a mean demand of 10 units and a
standard deviation of 2 units, as shown
in Figure 3. This could be the number of
thousand virtual machines needed each
day, or, in other domains, the number
of cars sold each day, or the number of
emergency room visits each hour.

If we were to examine 16 such
workloads in aggregate, as shown in
Figure 4, we end up with an aggregate
demand that has a mean of 160 and
standard deviation of 8 (/16 x2). Thus,
the coefficient of variation is reduced
from 0.2 = 2/10 to 0.05 = 8/160. This
is easy to see by comparing Figure 3
with Figure 4; Figure 4 has a scatter
plot which is “tighter”.

As another example, we can calcu-
late what would happen if we were to set
capacity to be three standard deviations
above the mean. In the case of parti-
tioned demands and unpooled resources,
the total capacity we would need is n(u
+ ko), or 256 = 16(10 + 3 X 2), whereas
if demands and resources were aggre-
gated, we would only need np + k</no or
184 =16 X 10 + 3 X 4 X 2.

Of course, the actual difference
will vary based on the mean pu, the
standard deviation o, the desired capac-
ity headroom factor k, and the number
of aggregated workloads n.

Capacity Utilization
Another the
expected value of utilization of total

important metric is
deployed capacity, which is just the
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FIGURE 4. 100 samples from a random variable that is the sum of 16 independent,
identically distributed normal random variables with u = 10, oo = 2.

mean demand divided by the total
capacity. For a single resource, that is
w/(w + ko), and therefore for n unag-
gregated demands served out of n such
resources it’s the mean total workload
demand divided by the total deployed
capacity, or nu/[n(pn + ko)]. In the case
of aggregated workload demands, it's
the same total work executing on lesser
capacity, so the utilization increases to

np/(np+ kyno). Figure 5 shows how
workload aggregation monotonically
increases to utilization of 100% in the
limit, as a function of these four vari-
ables. In other words, utilization U =
fln, p, 0, k).

To put it simply, dynamic aggrega-
tion of varying, independent workload
demands into pooled capacity always

generates benefits in terms of capacity
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to 100.

requirements and capacity utilization—
briefly stated as less capacity, that is
better

dedicated application silos to a private

utilized—whether it is from
cloud, from private clouds to a public
cloud, from multiple public clouds to
an intercloud or federated cloud, from
dispersed fog to cloud, or from individ-
ual devices to the fog. Of course, these
benefits can come at a price, such as
data transfer costs and latencies, secu-
rity vulnerabilities, or extra software to
implement dynamic resource allocation.

Unit Resource Cost Improvements
These capacity and utilization effects
come together to impact the overall eco-
nomics of demand aggregation, impact-
ing chief information officers, chief
financial officers, and IT personnel as
they think about implementing private
clouds or migrating to a public cloud.
Consider a simple analogy. If you ran a
fruit stand and needed to throw away a
rotting peach for every fresh peach that
you sold, your economics would be dis-
advantaged compared to a competitor of
the same size with less shrinkage.

In a similar way, if you have more
resources that are less well utilized, you
will have a unit cost disadvantage com-
pared to someone with fewer resources

10 EEE CLOUD COMPUTING
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and higher utilization levels. In other
words, for the same amount of work,
more resources and lower utilization are
two sides of the same coin. Even with-
out scale economies, the statistics of
aggregation provide a basis for a lower
delivered cost.

For the fruit stand, the unit price of
a sellable/consumable peach reflects the
unit acquisition cost of a peach * (the
total number of sellable/consumable
plus unsellable/unconsumable peaches
sellable/

consumable peaches. In other words,

acquired)/the number of
the sales price has to increase based
on the ratio of total peaches to good
peaches. As the number of bad peaches
increases, the selling price has to
increase to reflect that loss, assuming
profit margins and peach acquisition
costs remain the same. Conversely, the
sales price can decrease as there are
fewer bad peaches; ideally, none.
Instead of peaches, let’s consider
Then, the unit
price of a sellable/consumable compute

compute resources.

resource reflects the deployment costs
of a resource * (the total number of

sellable/consumable  plus unsellable/
unconsumable resources deployed)/
the number of sellable/consumable

resources. In other words, instead of

the sales price increasing based on the
ratio of total peaches to good peaches,
the sales price has to increase based
on the ratio of total capacity to “good,”
i.e., consumed, capacity. Peaches are
perishable, as is computing capacity,
which can'’t be inventoried and thus rots
instantly when it isn’t used.

The price increase penalty is easy
to determine from the formulas above.
The expected value of the price increase
for unaggregated resources is just:

total unaggregated capacity  n(ju+ ko)

used unaggregated capacity ni

The price increase for aggregated
resources is:

total aggregated capacity  np+ kno

used aggregated capacity nu

By dividing by n throughout, this
works out to:
Lk
N
p
Since k, u, and o are constants, it is
pretty clear that, in the limit as n — oo,
there is effectively no penalty.

To put it another way, the denomina-
tors don’t change, since the application
workloads remain the same. There is the
same amount of work either way; and
the same amount of good peaches either
way. The same number of people () still
buy the same average number of peaches
each (u) or do the same average amount
of computing. Therefore, the ratio of the
penalty for siloing vs. aggregation is

n(u + ko)
np
np + kno
ny
This of course is just:
n(u + ko)
ny+ kno
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Figure 6 shows the cost penalty for
any given number of workloads » and given
capacity level of w + ko, for the case where
wis 10 and o is 2. To use our favorite exam-
ple, where 72 is 16 and k is 3, this works out
to 256/184 = 1.39, a 40% cost penalty. If
we increase n to 100, the difference is
1600/1060 = 1.51, a 50% cost penalty.

Caveats
The real world may not always match the
conditions explored above. For example,
workload variation may not be normally
distributed, workloads may not have
the same mean or standard deviation,
dynamic pricing (as with spot instances)
may be used to smooth capacity by pro-
moting demand, there are network costs
to demand aggregation, and so forth.
However, the underlying insights
are unassailable: demand is smoothed
by aggregation of independent, uncor-
related workloads and therefore capacity
requirements to meet a given availability
target, in the sense of sufficient capacity,
can be lower, utilization of that reduced
capacity can be higher, and unit costs
and prices of sold resources can there-
fore be lower after aggregation. These
benefits occur immediately—with the
second workload to be aggregated—and
from there exhibit decreasing marginal
returns to scale, before considering any
scale economy effects.

Summary

Aggregation creates unarguable eco-
nomic benefits in terms of capital
investment required for service resource
capacity; utilization of that capacity; and
the delivered unit cost. These benefits
offer a series of advantages for private
cloud over siloed resources; public cloud
over a private cloud; cloud over fog; fog
over devices/things, and so forth. These
advantages need to be traded off against
other factors, for example, response

time, data networking costs, etc.
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of workloads increases, given four different capacity headroom settings.
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